Learning Face Age Progression: A Pyramid Architecture of GANs (CVPR 2018) Yang et al. 20183604 Hyunyul Cho ### Learning to Hash with Binary Deep Neural Network "Unsupervised Hashing with BDNN (UH-BDNN)" #### Table of contents - Introduction - A pyramid architecture of GAN - Experiments & result - Conclusion #### Introduction Two underlying requirements of face age progression - Aging accuracy - Identity permanence ### Problems with previous methods Current deep generative network based methods focus more on the modeling face transformation between two age groups - Good aging accuracy - Poor identity permanence Also, require multiple images of different ages of the same person #### Cropped facial area Operated on cropped faces Ignoring forehead and hair It is essential to operate age progression on the entire face. Age progression/regression by conditional auto encoder Zhang et al. #### Contributions A novel GAN based approach which give high aging accuracy while preserving personal identities It also operates with full face including forehead and hair which are ignored in other studies #### Pyramid Architecture of GAN #### Generator **Face Age Progression** - Synthesizing aged face require only forward pass through Generator - 3 conv layer - Encode it to latent space, capture stable facial properties - 4 residual blocks - Modeling the common structure shared by input and output faces - 3 Deconv layer - Age transformation to target image space #### Discriminator Classic GAN D loss $$\mathcal{L}_{GAN-D} = -\mathbb{E}_{x \in P_{young}(x)} \log[1 - D(G(x))] - \mathbb{E}_{x \in P_{old}(x)} \log[D(x)]$$ - In practice, D converges faster than Generator - This cause feeding vanishing gradient to Generator #### Loss $$\mathcal{L}_{GAN-D} = \frac{1}{2} \mathbb{E}_{x \sim P_{old}(x)} [(D_{\omega}(\phi_{age}(x)) - 1)^{2}] + \frac{1}{2} \mathbb{E}_{x \sim P_{young}(x)} [D_{\omega}(\phi_{age}(G(x)))^{2} + D_{\omega}(\phi_{age}(x))^{2}]$$ (3) $$\mathcal{L}_{GAN_G} = \mathbb{E}_{x \sim P_{young}(x)} [(D_{\omega}(\phi_{age}(G(x))) - 1)^2]$$ (4) ϕ_{age} : extracting age-related feature, make the generated face more distinguishable from the true elderly face #### Joint estimation ### **Identity Preservation** $$\mathcal{L}_{identity} = \mathbb{E}_{x \in P_{young}(x)} d(\phi_{id}(x), \phi_{id}(G(x)))$$ ### Objective Pixel wise L2 loss $$\mathcal{L}_{pixel} = \frac{1}{W \times H \times C} \|G(x) - x\|_{2}^{2}$$ The system training loss $$\mathcal{L}_{G} = \lambda_{a} \mathcal{L}_{GAN_G} + \lambda_{p} \mathcal{L}_{pixel} + \lambda_{i} \mathcal{L}_{identity}$$ $$\mathcal{L}_D = \mathcal{L}_{GAN-D}$$ ### Experiment & results Experiment I: Age progression Experiment II: Aging Model Evaluation II-A: Visual fidelity II-B: Aging Accuracy II-C: Identity Preservation II-D: contribution of Pyramid architecture II-E: Comparison with previous work ### Experiment I: Age progression ### **Experiment II-A: Visual Fidelity** (a) Robustness to glasses, occlusion and pose variations. (b) Hair aging. (c) Facial detail preservation. - forehead wrinkles - eyes - mouth - beard - laugh lines (d) Aging consistency. ### **Experiment II-B: Aging Accuracy** | MORPH | | | | | CACD | | | | |--------------------|------------------|------------------|------------------|--------------------|------------------|------------------|------------------|-------------------| | Age Cluster 0 | Age Cluster 1 | Age Cluster 2 | Age Cluster 3 | | Age Cluster 0 | Age Cluster 1 | Age Cluster 2 | Age Cluster 3 | | Synthesized faces* | | | | Synthesized faces* | | | | | | _ | 42.84 ± 8.03 | 50.78 ± 9.01 | 59.91 ± 8.95 | | _ | 44.29 ± 8.51 | 48.34 ± 8.32 | 52.02 ± 9.21 | | _ | 42.84 ± 0.40 | 50.78 ± 0.36 | 59.91 ± 0.47 | | - | 44.29 ± 0.53 | 48.34 ± 0.35 | 52.02 ± 0.19 | | Natural faces | | | | Natural faces | | | | | | 32.57 ± 7.95 | 42.46 ± 8.23 | 51.30 ± 9.01 | 61.39 ± 8.56 | | 38.68 ± 9.50 | 43.59 ± 9.41 | 48.12 ± 9.52 | 52.59 ± 10.48 | ### **Experiment II-C: Identity Preservation** Table 2. Objective face verification results on (a) MORPH and (b) CACD | | | Aged 1 | Aged 2 | Aged 3 | | Aged 1 | Aged 2 | Aged 3 | | |-----|--|--------------------------------------|---------------------|------------------|--------------------------------------|--|---------------------|---------------------|--| | | | verification confidence ^a | | | 3 | verification confidence ^a | | | | | | Test face | 94.64 ± 0.03 | 91.46 ± 0.08 | 85.87 ± 0.25 | | 94.13±0.04 | 91.96±0.12 | 88.60±0.15 | | | | Aged 1 | - | 94.34 ± 0.06 | 89.92 ± 0.30 | | - | 94.88 ± 0.16 | 92.63 ± 0.09 | | | | Aged 2 | _ | _ | 92.23 ± 0.24 | | _ | _ | 94.21 ± 0.24 | | | | verification confidence b | | | | verification confidence ^b | | | | | | (a) | Test face | 94.64 ± 1.06 | 91.46 ± 3.65 | 85.87 ± 5.53 | (b) | 94.13±1.19 | 91.96 ± 2.26 | 88.60 ± 4.19 | | | | Aged 1 | _ | 94.34 ± 1.64 | 89.92 ± 3.49 | | _ | 94.88 ± 0.87 | 92.63 ± 2.10 | | | | Aged 2 | _ | _ | 92.23 ± 2.09 | | _ | _ | 94.21 ± 1.25 | | | | verification rate (threshold = 76.5 , FAR = $1e - 5$) | | | | | verification rate (threshold = 76.5, FAR = 1e - 5) | | | | | | Test face | 100 ± 0 % | $98.91 \pm 0.40 \%$ | 93.09 ± 1.31 % | | 99.99 ± 0.01 % | $99.91 \pm 0.05 \%$ | $98.28 \pm 0.33 \%$ | | ### Experiment II-D: Contribution of pyramid architecture ### Experiment II-E: Comparison with previous work #### Conclusion Achieving higher aging accuracy while identity preservation compare to previous works. Pyramid Architecture of GAN was introduced to generate more details of aging. ## Thank You! #### Quiz - 1. Which component of the network was designed with pyramid architecture - A. Generator - B. Discriminator - C. Identity Preservation - 2. Which one is not the major component of age progression - A. Aging accuracy - B. Identity permanence - C. Gender distinguishing